Cevap :
Cevap 1) x + 6 = 13 ise bulmamız gereken bilinmeyen x olduğu için; onu yanlız
bırakmamız gerekiyor. Bu nedenle yanındaki +6 eşitliğin diğer tarafına – 6
olarak geçer ve denklemimiz;
x = 13 – 6 haline gelir. Buradan x = 7 olarak bulunur.
Cevap 2) x – 3 = 2 denkleminde ise x’ in yanındaki –3 eşitliğin diğer tarafına +3
olarak geçer.
x = 2 + 3 olur ve buradan x = 5 olarak bulunur.
Cevap 3) 3x + 5 = 14 ise, önce bilinmeyenimizin yanındaki +5’ i diğer tarafa –5
olarak geçiriyoruz.
3x = 14 – 5
3x = 9 olarak bulunuyor. x’in başında bulunan 3 çarpanı ise eşitliğin diğer tarafındaki
9’un yanına bölen olarak geçer. Buradan;
x = 9 / 3
x = 3 olarak bulunur…
UNUTMAYALIM ARKADAŞLAR!!!
BİR SAYIYI VEYA HARFLİ İFADEYİ EŞİTLİKTE YER DEĞİŞTİRİRKEN; MUTLAKA
İŞLEM ÖZELLİĞİNİ DE DEĞİŞTİRİCEKSİNİZ… YANİ; TOPLANAN SAYI EŞİTLİĞİN
DİĞER TARAFINA ÇIKARILAN OLARAK, ÇIKARILAN SAYI TOPLANAN OLARAK,
ÇARPIM DURUMUNDA OLAN SAYI DİĞER TARAFA BÖLEN OLARAK, BÖLEN
SAYI İSE DİĞER TARAFA ÇARPAN OLARAK GEÇER.. KISACA
Toplama ---- Çıkarma
Çıkarma ---- Toplama
Çarpma ---- Bölme
Bölme ---- Çarpma şeklinde yer değişikliği yapılır…
Cevap 4) 5x – 6 = 19 ise öncelikle bilinmeyen sayımızın yanındaki –6’ diğer
tarafa atıyoruz.
5x = 19 + 6 yapıyor ve toplayınca
5x = 25 oluyor. X’ in başındaki 5 çarpanı da diğer taraftaki sayının yanına
bölen olarak geçiyor. Buradan;
x = 25 / 5 ve x =5 olarak bulunuyor.
Cevap 5) 2x + 5 = 5 ise +5 i diğer tarafa –5 olarak geçirdiğimizde;
2x = 5 – 5 ve
2x = 0 bulunuyor…2 çarpanı da bölen geçiyor..
x = 0 / 2
x = 0
Cevap 6) x + 5 = 3 ise +5 diğer tarafa –5 geçer ve;
x = 3 – 5
x = – 2 olarak bulunur.
Cevap 7) 5 – x = 3 ise bilinmeyenimizin yanındaki +5 diğer tarafa geçer
– x = 3 – 5 ve buradan;
– x = – 2 olur. Fakat bilinmeyenimizin pozitif olması gerektiğinden;
Her iki tarafı – ile çarparız ve sonuçta;
x = +2 olur
Cevap 8) –9 –x = 10 ise –9 diğer tarafa +9 geçer;
–x = 10 + 9 olur. Ve buradan;
–x = 19 olur. x’in pozitif olması gerektiğinden
x = –19 olur.
Cevap 9) –5 –2x = 9 ise –5 diğer tarafa;
–2x = 9 + 5
–2x = 14 olur. –2 çarpanı diğer tarafa bölen olarak geçer ve;
x = 14 /–2
x = –7 olarak bulunur.
Cevap 10) 2.(x – 1) + x = 4 denkleminde öncelikle parantezin açılması gerekir.
Bu nedenle 2 ile parantezin içindeki x ve –1 sayılarını çarparız. Çarpınca;
2x – 2 + x = 4 olur. eşitliğimizin sol tarafında iki tane x’li bilinmeyen var.
Önce bunları toplayalım;
3x – 2 = 4 sonra da –2’yi diğer tarafa geçirelim…
3x = 4 + 2
3x = 6 ve 3 çarpanını da bölen olarak geçirirsek;
x = 6 / 3
x = 2 olarak bulunur.
Cevap 11) 3.(2x + 1) – 5 = 16 denkleminde yine ilk olarak parantezleri açarız.
6x + 3 – 5 = 16 sonra sayılar arasında işlem yaparız.
6x – 2 = 16 sonra –2’yi diğer tarafa geçirelim
6x = 16 + 2
6x = 18 ve en son 6 çarpanı diğer tarafa bölen olarak geçer ve;
x = 18 / 6
x = 3 olarak bulunur.
Cevap 12) 3.(2x – 3) –2.(1 – 3x) = 1 denkleminde ise yine ilk önce her iki
parantezi de açıyoruz. Açarken parantezin içindeki her iki ifadeyle de çarpmayı
unutmayın…
6x – 9 –2 + 6x = 1 daha sonra x’li ifadeleri kendi arasında, sayıları da kendi
arasında işleme sokuyoruz…
12x – 11 = 1 sonra –11’i diğer tarafa +11 olarak geçiriyoruz.
12x = 1 + 11
12x = 12 son olarak 12 çarpanını diğer tarafa bölen olarak geçiriyoruz..
x = 12 / 12
x = 1 oluyor.
Cevap 13 ) 2x – 5 + 3x = 4 + 7x + 13 denkleminde önce her iki tarafında aynı olan
ifadeleri birbiriyle topluyoruz.
5x – 5 = 7x + 17 oluyor. Eşitliğin her iki tarafında da x bilinmeyeni olduğundan
bunları tek bir tarafta toplamamız gerekiyor.. Yer değişikliği yaparken
küçük olan ifadeyi büyüğün yanına geçiricez.. Sol taraftaki 5x,
sağ taraftaki 7x’in yanına geçecektir. İşaret değiştirerek tabi;
– 5 = 7x – 5x +17 (7x ten 5x i çıkarıyoruz)
– 5 = 2x + 17 şimdi de bilinmeyenimizin yanındaki +17’yi diğer tarafa –17 olarak
geçiriyoruz.
– 5 – 17 = 2x
– 22 = 2x sonrada x’in başındaki 2 çarpanı bölen olarak geçiyor
– 22 / 2 = x
–11 = x olarak bulunuyor.
Cevap 14) 5.(3 – 2x) = 15 önce parantez açılır…
15 – 10x = 15 sonra 15 diğer tarafa –15 olarak geçer.
–10x = 15 – 15
–10x = 0
x = 0 / –10
x = 0 olur.
Cevap 15) 2.(5x + 3) + 8 = 34 önce parantez açalım..
10x + 6 + 8 = 34 sora sayıları toplayalım
10x + 14 = 34 sonra +14 diğer tarafa geçsin..
10x = 34 – 14
10x = 20 x’in başındaki 10 çarpanı bölen geçer;
x = 20/10
x = 2 olarak bulunur.
Cevap 16) 3 eksiğinin 7 katı 63 eden sayı kaçtır demek; hangi sayıdan 3’ü çıkarır
7 ile çarparsak 63 eder anlamına geliyor. Biz o sayıyı bilmediğimiz için 3 çıkarıp 7 ile
çarpamayız…
AMAA işlemi tersten yaparsak; yani sonuç olan 63’ü 7 ile bölersek
(çarpmanın tersi bölmedir.)
63 / 7 = 9 olur.. ve daha sonra 3 çıkarmak yerine 3 eklersek
9 + 3 = 12 bu sayıyı bulmuş oluruz.. cevap: 12
Cevap 17) 5.(x – 2) = 3x – 4 yine önce parantez açılır..
5x – 10 = 3x – 4 sonra küçük olan 3x, 5x’in yanına gelir.
5x – 3x – 10 = – 4
2x – 10 = – 4 sonra –10 yer değiştirir.
2x = – 4 + 10
2x = 6 sonra 2 çarpanı bölen olarak geçer
x = 6/2
x = 3 olarak bulunur.
Örnekler:
1) 6x +12 =0 denkemini çözüm kümesini bulunuz.
Çözüm:
6x+12=0 6x= -12
x= x=-2 Ç= olur.
2)-5x + 6 + x = 1 –x + 8 denkleminin çözüm kümesini bulunuz.
Çözüm:
-5x+ 6+ x =1 –x +8
-4x + 6 = -x + 9
-4x +x = 9-6
-3x=3
x= -1 Ç=
3) denkleminin çözüm kümesini bulunuz.
Çöm: denklemde paydası eşitlenir:
4) x-{2x-[x+1-(3x-5)]} = 3 ise x kaçtır?
Çözüm:
[x+1-3x+5]
[-2x+6]
{2x+2x-6}
x-4x+6 = 3
-3x = x= 1 Sonuç: 1
5) 9(1-2x) – 5(2-5x) = 20 denkleminin çözüm kümesi nedir?
Çözüm:
9(1-2x) – 5(2-5x) = 20
9-18x-10+25x = 20
7x-1= 20
7x = 21
x = 3
Sonuç: 3
6) x 2 x 1
----- + ----- = ----- + 1----- denkleminin çözüm kümesi nedir?
3 5 5 3
Çözüm:
x 2 x 4
----- + ----- = ----- + -----
3 5 5 3
(5) (3) (3) (5)
5x+6 3x+20
------- = ------- = 5x + 6 = 3x+20
15 15