bir bilinmeyenli denklemler ve özellikleri



Cevap :

BİR BİLİNMEYENLİ DENKLEMLER

İçerisinde eşitlik ve bir bilinmeyen bulunan ifadelere bir bilinmeyenli denklemler denir. (2x+6=0) Buradaki bilinmeyen yerine değişken de kullanılabilir.Denklemi doğru yapan değişkenin veya bilinmeyenin değerine denklemin çözümü, bu doğru değeri bulma işlemine denklemi çözme denir.Diğer bir deyişle denklemi sağlayan bilinmeyene denklemin kökü,denklemin köklerinden oluşan kümeye denklemin çözüm kümesi denir.

 

 

 

Denklemi çözerken:

Artılı sayılar eşittirin diğer tarafına eksi geçer. Eksili sayılar eşittirin diğer tarafına artı geçer. Çarpım durumunda olan sayı eşittirin diğer tarafına bölü olarak geçer. Bölü durumunda olan sayı eşittirin diğer tarafına çarpım olarak geçer. Eşittirin her iki tarafına aynı sayı eklenip çıkarılabilir. Eşittirin her iki tarafı sıfırdan farklı bir sayı ile çarpılıp bölünebilir. Eşittirin her iki tarafına aynı cebirsel ifade eklenip çıkarılabilir.

 

A. TANIM

a ve b gerçel (reel) sayılar ve a  0 olmak üzere,

ax + b = 0 eşitliğine birinci dereceden bir bilinmeyenli denklem denir.

Bu denklemi sağlayan x değerlerine denklemin kökü, denklemin kökünün oluşturduğu kümeye denklemin çözüm kümesi denir.

B. EŞİTLİĞİN ÖZELİKLERİ

1)  a = b ise, a ± c = b ± c dir.

2)  a = b ise, a . c = b . c dir.

3)  a = b ise, 

4)  a = b ise, an = bn dir.

5)  a = b ise, 

6)  (a = b ve b = c) ise, a = c dir.

7)  (a = b ve c = d) ise, a ± c = b ± d

8)  (a = b ve c = d) ise, a . c = b . d dir.

9)  (a = b ve c = d) ise, 

10)  a . b = 0 ise, (a = 0 veya b = 0) dır.

11)  a . b  0 ise, (a  0 ve b  0) dır.

12)  = 0 ise, (a = 0 ve b  0) dır.

C. ax + b = 0 DENKLEMİNİN ÇÖZÜM KÜMESİ

1) a  0 olmak üzere,

ax + b = 0 ise,

2) (a = 0 ve b = 0) ise, ax + b = 0 denklemini bütün sayılar sağlar. Buna göre, reel (gerçel) sayılarda çözüm kümesi

dir.

3) (a = 0 ve b  0) ise, ax + b = 0 denklemini sağlayan hiçbir sayı yoktur.

D. BİRİNCİ DERECEDEN İKİ BİLİNMEYENLİ DENKLEM SİSTEMİ

a, b, c  , a  0 ve b  0 olmak üzere,

ax + by + c = 0 denklemine birinci dereceden iki bilinmeyenli denklem denir.

Bu denklem düzlemde bir doğru belirtir. Doğru üzerindeki bütün noktaların oluşturduğu ikililer denklemin çözüm kümesidir.

Buna göre, ax + by + c = 0 denkleminin çözüm kümesi birçok ikiliden oluşur.

 

Birden fazla iki bilinmeyenli denklemden oluşan sisteme birinci dereceden iki bilinmeyenli denklem sistemi denir.

Çözüm Kümesinin Bulunması

Birinci dereceden iki bilinmeyenli denklem sistemlerinin çözüm kümesi; yok etme yöntemi, yerine koyma yöntemi, karşılaştırma yöntemi, grafik yöntemi, determinant yöntemi gibi yöntemlerden biri ile yapılır.

Biz burada üçünü vereceğiz.

a. Yok Etme Yöntemi: Değişkenlerden biri yok edilecek biçimde verilen denklem sistemi düzenlenir ve taraf tarafa toplanır.

Taraf tarafa toplandığında veya çıkarıldığında (ya da bir düzenlemeden sonra) değişkenlerden biri sadeleşiyorsa “Yok etme yöntemi” kolaylık sağlar.

b. Yerine Koyma Yöntemi: Verilen denklemlerin birinden, değişkenlerden biri çekilip diğer denklemde yerine yazılarak sonuca gidilir.

Denklemlerin birinden, değişkenlerden biri kolayca çekilebiliyorsa, “Yerine koyma yöntemi” kolaylık sağlar.

c. Karşılaştırma Yöntemi: Verilen denklemlerin ikisinden de aynı değişken çekilir. Denklemlerin diğer tarafları karşılaştırılır (eşitlenir). bilgi yelpazesi.net

Her iki denklemden de aynı değişken kolayca çekilebiliyorsa, “Karşılaştırma yöntemi” kolaylık sağlar.

 

ax + by + c = 0

dx + ey + f = 0


denklem sistemini göz önüne alalım:

Bu iki denklemin her birinin düzlemde bir doğru belirttiği göz önüne alınırsa üç durum olduğu görülür.

Birinci durum:

ise, bu iki doğru tek bir noktada kesişir.

Verilen denklem sisteminin çözüm kümesi bir tek noktadan oluşur.

İkinci durum:

ise, bu iki doğru çakışıktır.