Cevap :
POLİNOMLAR - ANLATIM
A. TANIM
n bir doğal sayı ve a0, a1, a2, ... , an – 1, an birer gerçel sayı olmak üzere,
P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn
biçimindeki ifadelere x değişkenine bağlı, gerçel (reel) katsayılı n. dereceden polinom (çok terimli) denir.
*
B. TEMEL KAVRAMLAR
P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn
olmak üzere,
Ü* a0, a1, a2, ... , an–1, an in her birine polinomun terimlerinin katsayıları denir.
Ü* a0, a1x, a2x2, ... , an–1xn – 1, anxn in her birine polinomun terimleri denir.
Ü* Polinomun terimlerinden biri olan a2x2 teriminde x in kuvveti olan 2 ye bu terimin derecesi denir.
Ü* Polinomu oluşturan terimler içerisinde derecesi en büyük olan terimin katsayısına polinomun baş katsayısı, bu terimin derecesine de polinomun derecesi denir ve
**** der [p(x)] ile gösterilir.
Ü* Değişkene bağlı olmayan terime polinomun sabit terimi denir.
Ü* a0 = a1 = a2 = ... = an = an–1 = 0 ise, P(x) polinomuna sıfır polinomu denir. Sıfır polinomunun derecesi tanımsızdır.
Ü* a0 ¹ 0 ve a1 = a2 = a3 = ... an – 1 = an = 0 ise, P(x) polinomuna sabit polinom denir. Sabit polinomunun derecesi sıfırdır.
Her polinom bir fonksiyondur. Fakat her fonksiyon polinom olmayabilir.
Buna göre, fonksiyonlarda yapılan işlemler polinomlarda da yapılır.
*
C. ÇOK DEĞİŞKENLİ POLİNOMLAR
P(x, y) = 3xy2 – 2x2y – x + 1
biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun derecesi denir.
*
D. POLİNOMLARDA EŞİTLİK
Aynı dereceli en az iki polinomun eşit dereceli terimlerinin katsayıları birbirine eşit ise bu polinomlara eşit polinomlar denir.
*
Ü* P(x) polinomunun katsayıları toplamı P(1) dir.
Ü* P(x) polinomunda sabit terim P(0) dır.
*
Herhangi bir polinomda; kat sayılar toplamı bulunurken o polinomda değişkenler yerine 1 yazılır. Sabit terim bulunurken o polinomda değişkenler yerine 0 (sıfır) yazılır.
P(ax + b) polinomunun; kat sayıları toplamı
P(a + b) ve sabit terimi P(b) dir.
*
Ü* P(x) polinomunun;
*** Çift dereceli terimlerinin kat sayıları toplamı:
*
*** Tek dereceli terimlerinin kat sayıları toplamı:
*
*
Kaynak: Polİnomlar - Anlatim http://www.webhatti.com/matematik/49798-polinomlar-anlatim.html#ixzz28M5YxtPy
whkaynak