Cevap :
Örnek:
Sayımızın kuralı: 5 ten sürekli olarak 2 çıkartılması olsun.
Örüntü şu şekilde devam eder:
5 5-3 5-(3+3) 5-(3+3+3) ……… 5-(n-1).3
1. terim 2. terim 3. terim 4. terim …….. n. terim
Görüldüğü gibi her terimde 5 sayısı sabit. Bu değişmeyen sabit terime, yani ilk terime “a1″ diyoruz.
Dikkat edersen her terimde; terim sayısının 1 eksiği 3 bulunmakta. Yani 2. terimde 1 tane 3, 3. terimdw 2 tane 3.
Son terime n. terim dersek ( n-1 ) tane 3 bulunur.
Bu yüzden yukarıdaki örüntünün kuralı şudur.
an= 5-(n-1).3
5 sayısını sürekli olarak 2 ile bölelim. ( Yani 1/2 ile çarpalım )
5 yerine de ilk terim anlamına gelen a1 yazarsak
an=a1-(n-1).3 olarak formül üretilir.
Burada an bize genel terimi, örüntünün formülünü verir.
Tekrar yukarıya bakıp terimlerin sonucunu bulursak;
5 3 1 -1 -3 …. şeklinde devam eder.
Her ardışık iki terima rasındaki fark bu soru için 2 dir.
Aritmetik Dizi
A. TANIM
Ardışık iki terimin arasındaki fark, aynı sabit bir sayı olan dizilere aritmetik dizi denir. Diğer bir ifadeyle " n Î N+ için, an+1 – an = d olacak şekilde bir d Î R varsa (an) dizisine aritmetik dizi, d sayısına da ortak fark denir.
ÖRNEK
(an) = (n+10)/5 dizisinin aritmetik dizi olduğunu gösteriniz. Ortak farkını bulunuz.
an+1 – an = (n+1+10)/5 – (n+10)/5 = 1/5 olduğuna göre (an), ortak farkı d = 1/5 olan bir aritmetik dizidir.
B. GENEL TERİM
Aritmetik dizinin ilk terimi a1 ve ortak farkı d = 1 olan bir aritmetik dizidir.
5
a1 = a1
a2 = a1 + d
a3 = a2 + d = a1 + 2d
a4 = a3 + d = a1 + 3d
................................
an = an – 1 + d = a1 + (n – 1)d dir.
Demek ki, aritmetik dizinin genel terimi: an = a1 + (n – 1)d dir.
ÖRNEK
İlk terimi 8 ve ortak farkı 2 olan aritmetik dizinin genel terimi nedir?
a1 = 8 ve d = 2 an = a1 + (n – 1) d
an = 8 + (n – 1) 2
an = 2n + 6’dır.
C. ARİTMETİK DİZİNİN ÖZELLİKLERİ
Aritmetik dizide ap ve ak biliniyorsa, ortak fark : d = ap – ak dir.
p - k
ÖRNEK
39. terimi 19 ve 45. terimi 22 olan aritmetik dizinin ortak farkı kaçtır?
a39 = 19 ve a45 = 22 d = (a45 – a39)/(45 – 39)
d = (22 – 19)/6
d = ½’ dir.
a ve b gibi iki sayı arasına n tane terim yerleştirilerek oluşturulan aritmetik dizinin ortak farkı :
d = b – a dır.
n + 1
ÖRNEK
- 8 ve 28 sayıları arasına 8 tane terim yerleştirilerek oluşturulan aritmetik dizinin ortak farkı kaçtır?
a = -8, b = 28 ve n = 8 olduğuna göre, d = (b – a)/(n+1) = [28 – (-]/(8+1) = 36/9 = 4
Aritmetik dizinin ilk terimi n teriminin toplamı Sn ile gösterilirse,
Sn = n [2a1 + (n – 1)d] ya da
2
Sn = n (a1 + an) olur.
2
Bir aritmetik dizide, her terim kendisinden eşit uzaklıkta iki terimin kendisinden eşit uzaklıktaki iki terimin aritmetik ortalamasına eşittir. Diğer bir ifadeyle k<p iken,
ap = ap – k +ap + k dır.
2
ÖRNEK
19. terimi 42 ve 33. terimi 88 olan aritmetik dizinin 26. terimi kaçtır?
a19 = 42 ve a33 = 88 ve (19 + 33)/2 = 26 olduğu için,
a26 = (a19+a33)/2
a26 = (42+8/2
a26 = 65’tir.
GEOMETRİK DİZİ
TANIM
Ardışık iki terimin oranı aynı sabit bir sayı olan dizilere geometrik dizi denir. Diğer bir ifadeyle
" n Î N+ için, an + 1 = r olacak şekilde bir r Î R varsa (an) dizisine geometrik dizi, r sayısına ortak
an
çarpan veya ortak oran denir.
ÖRNEK
(an) = (2n+5) dizisinin geometrik dizi olduğunu gösteriniz. Dizinin ortak çarpanını bulunuz.
(an+1)/an = (2n+1+5)/2n+5 = 2olduğuna göre (an), ortak çarpanı r = 2 olan geometrik bir dizidir.
GENEL TERİM
Dizinin ilk terimi a1 ve ortak çarpanı r olsun. Bu durumda,
a1 = a1
a2 = r.a1
a3 = r.a2 = r2.a1
a4 = r.a3 = r3.a1
Demek ki, geometrik dizinin genel terimi: an = rn – 1.a1 veya an = rn – p.ap dir.
ÖRNEK
İlk terimi 14 ve ortak çarpanı ½ olan geometrik dizinin genel terimi nedir?
a1 = 4 ve r = ½ an = rn – 1 . a1
an = (1/2)n – 1 . 4
an = 23 - n
GEOMETRİK DİZİNİN ÖZELLİKLERİ
Geometrik dizide ap ve ak biliniyorsa, ortak çarpan : rp – k = ap eşitliğinde bulunur.
ak
ÖRNEK
2. terimi 3/5 ve 5. terimi 75 olan geometrik dizinin ortak çarpanı nedir?
a2 = 3/5 ve a5 = 75 r5 – 2 = a5/a2
r3 = 75/3/5
r3 = 125
r = 5 tir.
Geometrik dizinin ilk n teriminin toplamı Sn ile gösterilirse Sn = a1.1 – rn olur.
1 – r
ÖRNEK
İlk terimi 6 ve ilk 3 teriminin toplamı 42 olan geometrik dizinin 3. terimi nedir?
a1 = 6 ve S3 = 42 ise S3 = a1 . (1 – r3)/(1 – r)
Bir geometrik dizide, her terim kendisinden eşit uzaklıktaki iki terimin geometrik ortalamasına eşittir. Diğer bir ifadeyle k < p iken, ap = dır.
ÖRNEK
3. terimi 3 ve 5. terimi 6 olan geometrik dizinin 7. terimi nedir?
a3 = ve a5 = (a3 . a7)1/2 6 = (3 . a7)1/2 36 = 3 . a7 a7 = 12’dir.
SONUÇ:
Sabit dizi, ortak farkı 0 olan aritmetik bir dizidir. Sabit dizi, ortak çarpanı 1 olan geometrik bir dizidir. Sabit dizi, ortak çarpanı 1 olan geometrik bir dizidir. Yani, sabit dizi hem aritmetik hem de geometrik dizidir.
ÖRNEK:
Bir geometrik dizinin ilk terimi x, ortak çarpanı 6, n. terimi y’dir. Bu dizinin, ilk n teriminin toplamının x ve y’ye bağlı ifadesi aşağıdakilerden hangisidir?
a1 = x, r = 6 ve an = y olduğuna göre, an = a1rn – 1 y = x.6n – 1 6n = 6y/x ... (*)
Sn = a1.(1 – rn)/(1 – r) = x . (1 – 6n)/(1 – 6) = x . (1 – 6y/x)/(-5) = (6y – x)/5 dir.
SERİLER
A. TANIM
(an) reel terimli bir dizi olsun.
= a1+a2+a3+ ...+an + ... sonsuz toplamına seri denir.
an’e serinin genel terimi denir.
Serinin ilk n teriminin toplamından oluşan Sn = a1+a2+a3+ ...+an toplamına serinin n. kısmi toplamı denir.
(Sn) = (S1,...,S2,...,S3,...,Sn,...) dizisine kısmi toplamlar dizisi denir.
a) (Sn) dizisi yakınsak ise serisi de yakınsaktır ve serinin toplamı = lim Sn’ dir.
b) (Sn) dizisi ıraksak ise seriside ıraksaktır.
serisi yakınsak ise lim an = 0’dır. Bu ifadenin tersi doğru değildir.Yani, lim an = 0 iken serisi yakınsak olmayabilir.
lim an ¹ 0 ise serisi ıraksaktır.