Cevap :
anım : Sabit olmayan, birden fazla polinom un çarpımı biçimin de yazılamayan polinomlara indirgenemeyen polinomlar denir. Baş katsayısı bir olan indirgenemeyen polinomlar Asal polinomlar denir.
* P(x) = x2 + 4 , Q(x) = 3x2 + 1, R(x) = 2x – 3 , T(x) = - x + 7
Polinomları indirgenemeyen polinomlar dır.
P(x) = x2 + 4 baş katsayısı 1 olduğundan asal polinom dur.
Tanım : İçindeki değişkenlerin alabileceği her değer için doğru olan eşitliklere özdeşlik denir.
a) x3 (x2 – 2x) = x5 – 2x4
b) a2 (x + y)2 = a2 x2 + a2 y2 özdeşlik
c) a2 (x +y)2 = a2 x2 + a2 y2 özdeşlik değildir.
ÖNEMLİ ÖZDEŞLİKLER
I) Tam Kare Özdeşliği:
a) İki Terim Toplamının Karesi : (a + b)2 = a2 + 2ab + b2
b) İki Terim farkının Karesi : (a – b)2 = a2 – 2ab + b2
İki terim toplamının ve farkının karesi alınırken; birincinin karesi,birinci ile ikincinin iki katı, ikincinin karesi alınır.
c) Üç Terim Toplamının Karesi:
(a +b + c)2 = a2 + b2 + c2 + 2 (ab + ac + bc) şeklindedir.
II) İki Terim Toplamı veya Farkının Küpü :
a) İki Terim Toplamının Küpü : (a + b)3 = a3 + 3a2b + 3ab2 + b3
b) İki Terim Farkının Küpü : (a – b)3 = a3 – 3a2b + 3ab2 – b3
Birinci terimin küpü;( ) birincinin karesi ile ikincinin çarpımının 3 katı, (+) birinci ile ikincinin karesinin çarpımının 3 katı,( ) ikincinin küpü biçimindedir. Bu açılımlara Binom Açılımıda denir
Not:. Paskal Üçgeni kullanılarak 4.,5.,6.,...Dereceden iki terimlilerin özdeşliklerini de yazabiliriz.
III) İki Kare Farkı Özdeşliği: (a + b) (a – b) = a2 – b2
İki terim toplamı ile farkının çarpımı; birincinin karesi ile ikincinin karesinin farkına eşittir.